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Motivation

Demand curvature is important for understanding price, quantity,
and welfare effects of cost and policy changes, including
taxation/exchange rate pass-through, efficiency gains of mergers, or
nominal vs. real adjustment costs.

Current empirical models are capable of “reasonable” substitution
patterns.

We don’t know how modeling assumptions may limit estimates of
demand curvature in discrete choice models.

Is it possible to estimate robust demand curvatures using common,
familiar methods?

(How did we get here? – Perhaps at the end if we have time...)
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Berry-Haile (2021): Handbook of IO, Vol.4

These substitution patterns drive answers to many questions of interest
— e.g., the sizes of markups or outcomes under a counterfactual merger.
However, other kinds of counterfactuals can require flexibility in other
dimensions. For example, “pass-through” (e.g., of a tariff, tax, or
technologically driven reduction in marginal cost) depends critically on
second derivatives of demand. It is not clear that a mixed-logit model is
very flexible in this dimension.
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Model Specification and Curvature Restrictions

Non-parametrically methods deal with “reasonable” shape
restrictions at a high computational cost, limiting their applicability.

– Compiani (2022); Magnolfi, McClure & Sorensen (2022)

We focus on mixed-logit (ML) demand because the framework:

Can accommodate many products.

Is a workhorse model for research and policy.

Can approximate any random utility model.

– McFadden & Train (2000)

We offer a framework for researchers to avoid restricting the range
of estimable demand curvature, and thus the predictions of our
model on pass-through.
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Contributions

1 Document the sources of demand curvature in unit demand DCM
consistent with utility maximization.

2 The Demand Manifold: Connecting elasticity and curvature and
show how common modeling assumptions restrict their relationship.

3 Modify the ML model to generate flexible estimates of both
demand elasticity and curvature.

Quasilinear utility (shape of price R.C. distribution).

Income effects (shape of income subfunction).

4 Empirical evidence – Flexibility is economically meaningful:

Identification: Monte Carlo simulation (Q-L vs. Box-Cox).

Uniform pricing: Standard approaches bias consumer welfare
evaluations (IRI: RTE-Cereal).
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Demand Manifold Figure 1: Demand Manifolds: Pollak
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Pass-Through. Differentiating the first order condition (2a) and using the Envelope Theorem,

we obtain the absolute pass-through rate of a monopolist (Cournot, 1838, §5):

dp(x)

dc
=

1

2− ρ(x)
> 0 . (3)

Log-concave demands are associated with incomplete pass-through. For linear demands, ρ = 0,

pass-through rate is exactly 50% while for ρ = 1 is 100%, at the full pass-through brown vertical line

FPT in Figure 1. For log-convex demands pass-through is more than complete. Both incomplete

and more than complete pass-through rates are possible features of monopoly pricing.

Superconvexity. We now address how the optimal markup responds to changes in prices or sales

to conclude this brief review. The CES is the only case where the markup is invariant to sales or

price. Its inverse demand is:

p(x) = βx−1/σ , (4)

– 7 –

Elasticity (ε) and curvature (ρ) are connected through the necessary and sufficient conditions of profit
maximization (Mrázová-Neary, 2017).

p(q) + q·pq(q) = p(q)

[
1−

1

ε(q)

]
= c > 0 ⇐⇒ ε(q) ≡ −

p·qp(p)
q(p)

> 1 ,

2pq(q) + q·pqq(q) = pq(q) [2− ρ(q)] < 0 ⇐⇒ ρ(q) ≡
q(p)·qpp(p)[
qp(p)

]2 < 2 ,
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Pass-Through: Monopoly vs. Oligopoly
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Theoretical Empirical

Markups (CRS single-product monopoly/oligopoly):

p− c
p

=
1

ε
;

p− c
p

=
θ

ε

Pass-through rate (Cournot, 1838 / Weyl-Fabinger, 2013):

dp

dc
=

1

2− ρ(q)
;

dp

dc
=

1

1 + θ(1− ρ)
.
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Demand Subconvexity
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Demand Manifold

CES is the only case where (ε, ρ) invariant to price:

ρ
CES

= 1 +
1

εCES
.

CES is a useful limiting case which defines the area of “sub-convex” demand⇔ Marshall’s Second Law of
Demand⇒ Single-product oligopoly equilibrium exists (Caplin & Nalebuff, 1991).
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Nevo’s Elasticity and Curvature Estimates Estimates
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A: Full Model
Estimates
Avg. Curvature (1.06)
Avg. Elasticity (3.62)

(a) Full Model
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B: Multinomial Logit
Estimates
Avg. Curvature (0.98)
Avg. Elasticity (3.71)

(b) Multinomial Logit

Use Nevo’s simulated breakfast cereal data to explore model predictions for
different preference specifications.

Comparing the full R.C. and ML model suggests that model specification
matters for pass-through analysis.

Price R.C. and price interactions also appear to increase the range of demand
curvature estimates (not reported).

The average elasticity and curvature estimates do not vary too much but their
distributions change dramatically.
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Distributions of Price Sensitivity
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Estimated Price Sensivity Across Different Models
Full Model (Avg=-62.74, SD=85.02, Skew=-4.91)
Only Demographic Interactions (Avg=-56.14, SD=69.02, Skew=-4.59)
Only Price RC (Avg=-31.0, SD=2.0, Skew=-0.04)
No Price Interactions (Avg=-30.89, SD=0.0, Skew=0)

Including price-demographic interactions lead to very asymmetric empirical
distributions of individual demand slopes.

MNL does not allow for any price response heterogeneity.
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General Price Distribution

We present general manifold expressions.

We first consider the following generalization of Nevo’s model where
Φ(0, 1) is a non-necessarily symmetric distribution:

uij = xjβ
?
i + fi(yi, pj) + ξj + εij , i ∈ I, j ∈ J , εij ∼ EV1 ,

β?i = β + σxνi , νi ∼ N(0, In) ,

fi(yi, pj) = α?i
(
yi − pj

)
=

(
α+ σpφi

)
×
(
yi − pj

)
, φi ∼ Φ(0, 1) ,

Choice of mixing distribution is an integral part of model
specification.

– McFadden and Train (2000)
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Logit Demand

Utility maximization: Individual i purchases her preferred product j
if:

qij(p) = 1
(
uij ≥ uik , ∀k ∈ {0, 1, . . . , J}

)
,

Because of i.i.d. EV1 of εij , individual i’s choice probability of
product j is:

Pij(p) =
exp

(
xjβ

?
i − α?i pj + ξj

)

J∑
k=0

exp
(
xkβ?i − α?i pk + ξk

) ,

Miravete, Seim, Thurk (ε, ρ) & DCM



Intro. Manifolds Q-L BLP Empirical Summary General Cases Mixing Distribution

Intermediate Results

Consider a measure G(i) of heterogeneous individuals. Total
demand for product j is:

Qj(p) =

∫

i∈I

Pij(p) dG(i) .

Derivatives of the utility’s price subfunction (general case):

f ′ij =
∂fi(yi, pj)

∂pj
, and f ′′ij =

∂2fi(yi, pj)

∂p2j
.

Consider the Bernouilli distribution (choice of one product):

µij = Pij ,

σ2
ij = Pij(1− Pij) ,

skij = Pij(1− Pij)2 − P2
ij(1− Pij) = σ2

ij(1− 2Pij) .
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Main Results

Demand elasticity, curvature and manifold are:

εj(p) = − pj
Qj(p)

∫

i∈I

f ′ij ·σ2
ij dG(i) ,

ρj(p) =

∫

i∈I

µij dG(i)×

∫
f ′′ij · σ2

ij dG(i) +

∫ (
f ′ij
)2 · skij dG(i)

[∫
f ′ij · σ2

ij dG(i)

]2 .

Demand manifold is therefore:

ρj [εj(p)] = p2j ·
Qj(p)

ε2j (p)
·
[∫

f ′′ij ·σ2
ij dG(i) +

∫ (
f ′ij
)2 ·skij dG(i)

]
.
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MNL: α?i = α ; β?i = β

Demand elasticity and curvature for MNL are:

εj(p) = αpj
(
1− Pj

)
,

ρj(p) =
1− 2Pj
1− Pj

< 1 .

And the demand manifold is:

ρj(p) =
αpj
(
1− 2Pj

)

εj(p)
.

MNL is always log-concave (it imposes incomplete pass-through).
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MNL: α ; β
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Consider a monopolist: one inside good with utility uij = 1− 0.5pj + εij .

Logit manifold. For any given curvature, a larger market share of the product
makes demand less elastic or, alternatively, for any given elasticity, a larger
market share reduces demand curvature.
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MNL with Attribute Heterogeneity: α ; β?i
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Random coefficients of attributes allow for flexible substitution patters.

Random coefficients of attributes cannot generate more than complete
pass-through if log-concave distributed. – Caplin-Nalebuff ( 1991)
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MNL with Price Heterogeneity: α?i ; βi
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Price random coefficients to expand the range of estimable curvatures within a
unit demand discrete choice model.
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The Shape of the Mixing Distribution
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(a) Normal
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Vary Price-Sensitivity

(b) Lognormal

Skewness of the mixing distribution allows for greater curvature.

If demand estimates fall in the sub-convex region, a common cost increase for a
multiproduct firm results in a markup reduction for all its products and not only
for a subset (when some of these estimates fall into the super-convex region).

Symmetric R.C. distributions may restrict the range of estimable curvatures and
bias demand elasticity estimates upwards.
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Discussion
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Choosing the shape of the distribution is not trivial — Combining normal and
lognormal allows us to cover nearly all the set of sub-convex demands.

Asymmetric distributions have been used to ensure that all individuals show
responses to price or attributes of the same sign. – Train (2009)

We can capture nearly all the sub-convex region with a flexible distribution of
price sensitivity:

CES now rationalized by the distribution of price-sensitivities (αi).
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BLP : Discrete Choice with Income Effects

Remember that Nevo’s quasi-linear preferences implied the following
utility subfunction:

fi(yi, pj) = α
(
yi − pj

)
.

BLP does not include random coefficients on prices but rather they
allow for expenses in other products to depend on income:

fi(yi, pj) = α ln
(
yi − pj

)
.

An obvious generalization involves the use of the Box-Cox
Transformation:

fi(yi, pj) = α
(
yi − pj

)(λ)
=




α

(
yi − pj

)λ − 1

λ
, if λ 6= 0 ,

α ln
(
yi − pj

)
, if λ = 0.
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BLP99 Approximation

For practical reasons most applications including income effects
follow the specification of BLP99, which is close to a Maclaurin
first order approximation:

fi(yi, pj) ' α ln yi −
α

yi
pj ≈ −α?i pj .

More generally, using Box-Cox:

fi(yi, pj) = α
(
yi − pj

)(λ) ' αy(λ)i − αpj
y1−λ

.

Thus, we allow data to pin down the strength of income effects
through more flexible price sensitivity formulation that is still
(roughly) consistent with utility maximization (Roy’s Identity).

λ = 0→ BLP99; λ = 1→ quasi-linear (MNL).
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Income Effects: Box-Cox Transformation, λ
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Vary Box-Cox Transformation Parameter

Income effects play the same role than the distribution of price random
coefficient in expanding the range of estimable demand curvatures.

For any given λ the resulting pass-through estimate is critically determined by
the empirical income distribution.
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BLP99: Effects by Price Segments By Origin
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Demand for Automobiles

Table: Income Effects, Markups, and Pass-Through Rates

λ = 0 λ = 0.5 λ = 0.75 λ = 1

ε 2.28 (0.26) 2.25 (0.48) 2.52 (1.01) 2.73 (2.05)

ρ 1.43 (0.08) 1.31 (0.07) 1.15 (0.05) 0.99 (0.01)

Markup (%) 44.41 (5.26) 46.25 (8.77) 44.48 (13.77) 48.12 (20.55)

Pass-Through (%) 178.99 (18.33) 145.91 (16.38) 117.90 (7.27) 99.41 (0.01)

Quasilinear MNL specification (λ = 1; α?i = α) always predicts full pass-through
at the cost of excessively elastic demand.

BLP99 specification (λ = 0; α?i = α
yi

) leads to larger pass-through rates.

Averages differ but dispersion for elasticity and markups are also more
pronounced for quasilinear preferences while the opposite is true for curvature
and pass-through for BLP99 – important heterogeneous implications of
counterfactual analysis.
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Summary of Theoretical Results

Robust estimates of demand curvature requires flexible specification
of price interactions with consumer heterogeneity.

A way of doing so is allowing price sensitivity to vary with observed
demographics, e.g., income.

Flexible interaction of demographics with prices is useful to account
for pass-through in oligopoly with a parsimonious one-parameter
transformation (Box-Cox) that modulates curvature:

uij = xjβ
?
i +fi(yi, pj) + ξj + εij

Income Effects: fi(yi, pj) = α(yi − pj)(λ)

Quasilinear: fi(yi, pj) = αD
(λ)
i pj

How to identify λ?
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Monte Carlo: Data Generating Process

uijt = β0︸︷︷︸
Common

Across
Consumers

+

K∑

k=1

(
βkX + σkXν

k
i

)
xkjt

︸ ︷︷ ︸
Idiosyncratic

Characteristic Tastes

−α · pjt · yλ−1it︸ ︷︷ ︸
Idiosyncratic

Price Sensitivities

+ξjt + εijt ,

1 Indirect utility with income effects: J=20, T =100, I=1000

2 Two (K=2) observable attributes (xk) with common (βkX) and
idiosyncratic (σkX) valuations.

3 Income yit iid LogNormal as in Andrews, Gentzkow & Shapiro
(2017) + time variation.

4 Researcher knows cost shocks ωjt and marginal cost function
(log-linear).

5 Solve for equilibrium prices s.t. inside share = 20% and ε=2.5
⇒ (β0, α).
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Identification

Identify σkX via Gandhi & Houde (2020) Differentiation IVs:

Zx,kjt =
∑

r

(
xkrt − xkjt

)2

We’ve already shown that price RC generates curvature so can use
this IV as a measure of average curvature:

Zpjt =
∑

r

(
p̂rt − p̂jt

)2

where p̂ comes from hedonic pricing regression using ωjt.

Identify λ by interacting curvature measure (Zp) with distribution
moments:

Zdt = Zpt ⊗
{

inc10%t , inc50%t , inc90%t

}
.

Idea: Skewness of price interactions determines curvature ⇒
interact pass-through measure with moments from the distribution.
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Intuition: Heterogeneous Price Sensitivities
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Consider the case of two consumers with linear demand curves of different slope.
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Intuition: Heterogeneous Price Sensitivities
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 CESLeft Panel

Suppose monopolist can set prices for each individual.

Marginal cost is $2 and decreases by $1. How does the firm respond?

Firm decreases price by $0.5 for both consumers.
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Intuition: Heterogeneous Price Sensitivities
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 CESRight Panel

Constrain the firm to uniform pricing.

Marginal cost is $2 and decreases by $1. How does the firm respond?

Firm decreases price by $2.0.

The cost reduction resulted in firm setting a price such that the price-sensitive
consumer participates.
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Intuition: Heterogeneous Price Sensitivities
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 CESDiscussion

Pass-through could be over-shifted w/ uniform pricing + heterogeneous
price-sensitivity.

The effect of a cost shift is different at different price levels!

Widespread evidence of overshifting and uniform pricing in retail.
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Results - Parameters

Scenario α (varies) λ (varies) σx = 5 σ0 = 5

True-Specification A.Bias RMSE A.Bias RMSE A.Bias RMSE A.Bias RMSE

1: log–log 0.003 0.161 0.000 0.000 -0.006 0.072 -0.012 0.231

2: linear–linear 0.001 0.011 - - 0.015 0.090 -0.082 0.947

3: BC–BC 0.000 0.037 -0.001 0.024 0.006 0.079 -0.001 0.735

4: log–BC 0.331 0.379 0.005 0.006 -0.012 0.070 0.025 0.121

5: linear–BC -0.031 0.048 -0.060 0.085 0.006 0.091 0.093 1.109

6: BC–log -15.514 15.612 - - 0.851 0.947 -2.211 2.218

7: BC-linear 0.248 0.248 - - 0.015 0.091 -0.272 0.987

1 Scenarios 1–3: MC recovers true parameters when correctly specified.
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Results - Parameters

Scenario α (varies) λ (varies) σx = 5 σ0 = 5

True-Specification A.Bias RMSE A.Bias RMSE A.Bias RMSE A.Bias RMSE

1: log–log 0.003 0.161 0.000 0.000 -0.006 0.072 -0.012 0.231

2: linear–linear 0.001 0.011 - - 0.015 0.090 -0.082 0.947

3: BC–BC 0.000 0.037 -0.001 0.024 0.006 0.079 -0.001 0.735

4: log–BC 0.331 0.379 0.005 0.006 -0.012 0.070 0.025 0.121

5: linear–BC -0.031 0.048 -0.060 0.085 0.006 0.091 0.093 1.109

6: BC–log -15.514 15.612 - - 0.851 0.947 -2.211 2.218

7: BC-linear 0.248 0.248 - - 0.015 0.091 -0.272 0.987

1 Scenarios 1–3: MC recovers true parameters when correctly specified.

2 Scenarios 4–5: Estimator recovers true parameters of nested simpler
DGPs.
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Results - Parameters

Scenario α (varies) λ (varies) σx = 5 σ0 = 5

True-Specification A.Bias RMSE A.Bias RMSE A.Bias RMSE A.Bias RMSE

1: log–log 0.003 0.161 0.000 0.000 -0.006 0.072 -0.012 0.231

2: linear–linear 0.001 0.011 - - 0.015 0.090 -0.082 0.947

3: BC–BC 0.000 0.037 -0.001 0.024 0.006 0.079 -0.001 0.735

4: log–BC 0.331 0.379 0.005 0.006 -0.012 0.070 0.025 0.121

5: linear–BC -0.031 0.048 -0.060 0.085 0.006 0.091 0.093 1.109

6: BC–log -15.514 15.612 - - 0.851 0.947 -2.211 2.218

7: BC-linear 0.248 0.248 - - 0.015 0.091 -0.272 0.987

1 Scenarios 1–3: MC recovers true parameters when correctly specified.

2 Scenarios 4–5: Estimator recovers true parameters of nested simpler
DGPs.

3 Scenarios 6–7: Common (miss-)specifications introduce bias.
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Results - Biases Matter

Scenario Coeff .Var MAB Corr.

True-Specification DGP EST. ε ρ (ε, ρ) (ε̂, ρ̂)

1: log–log -3.81 -3.79 0.00 0.00 0.66 0.66

2: linear–linear 0.00 0.00 0.00 0.00 0.66 0.66

3: BC–BC -0.57 -0.57 0.00 0.00 -0.47 -0.47

4: log–BC -3.81 -3.77 0.00 0.00 -0.47 -0.47

5: linear–BC 0.00 -0.11 0.00 -0.01 -0.44 -0.43

6: BC–log -0.57 -3.77 0.55 -0.69 -0.44 0.63

7: BC-linear -0.57 0.00 -0.16 0.22 -0.44 -0.43

1 Scenarios 1–3: MC recovers (ε, ρ) when correctly specified.
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Results - Biases Matter

Scenario Coeff .Var MAB Corr.

True-Specification DGP EST. ε ρ (ε, ρ) (ε̂, ρ̂)

1: log–log -3.81 -3.79 0.00 0.00 0.66 0.66

2: linear–linear 0.00 0.00 0.00 0.00 0.66 0.66

3: BC–BC -0.57 -0.57 0.00 0.00 -0.47 -0.47

4: log–BC -3.81 -3.77 0.00 0.00 -0.47 -0.47

5: linear–BC 0.00 -0.11 0.00 -0.01 -0.44 -0.43

6: BC–log -0.57 -3.77 0.55 -0.69 -0.44 0.63

7: BC-linear -0.57 0.00 -0.16 0.22 -0.44 -0.43

1 Scenarios 1–3: MC recovers (ε, ρ) when correctly specified.

2 Scenarios 4–5: Estimator recovers (ε, ρ) of nested simpler DGPs.
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Results - Biases Matter

Scenario Coeff .Var MAB Corr.

True-Specification DGP EST. ε ρ (ε, ρ) (ε̂, ρ̂)

1: log–log -3.81 -3.79 0.00 0.00 0.66 0.66

2: linear–linear 0.00 0.00 0.00 0.00 0.66 0.66

3: BC–BC -0.57 -0.57 0.00 0.00 -0.47 -0.47

4: log–BC -3.81 -3.77 0.00 0.00 -0.47 -0.47

5: linear–BC 0.00 -0.11 0.00 -0.01 -0.44 -0.43

6: BC–log -0.57 -3.77 0.55 -0.69 -0.44 0.63

7: BC-linear -0.57 0.00 -0.16 0.22 -0.44 -0.43

1 Scenarios 1–3: MC recovers (ε, ρ) when correctly specified.

2 Scenarios 4–5: Estimator recovers (ε, ρ) of nested simpler DGPs.

3 Scenarios 6–7: Common (miss-)specifications generated biased (ε̂, ρ̂):

Biased own- and cross-price elasticities ⇒ antitrust implications.

Biased curvature ⇒ pass-through (e.g., inflation) and trade
implications.
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Question and Empirical Strategy

Motivation:

Increased access to customer data & sophisticated pricing raises concern
about distributional implications. – CEA (2015)

Welfare effects of 3rd-degree price discrimination (3DPD) driven by
relative curvature of local demands. – Aguirre, Cowan & Vickers (2010)

Research Question: How does the specification of demand affect our
estimate of the consumer welfare implications of 3DPD?

Approach:

Mixed-Logit demand estimation using store-level RTE cereal data.

Recover upstream marginal cost of each product based on multi-product
firm portfolios under uniform pricing across stores in given market.

Experiment: Given recovered marginal cost and preferences, allow
products’ prices to vary by store & recompute equilibrium prices.
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IRI: Breakfast Cereal

Weekly scanner data for ready-to-eat (RTE) cereal from 2007–2011.

Product defined brand-flavor pair; e.g., Kellogg’s Special K Fruit &
Yogurt.

Serving defined as one ounce.

Potential market identified via milk and paper towels.

– Backus, Conlon & Sinkinson (2021)

Focus on products which account for 85% of sales.

Large markets with geographic spread: Boston (5.2% of revenue),
Philadelphia (4.5%), Chicago (4.2%), San Francisco (3.0%), Seattle
(2.5%), Houston (2.5%), and St Louis (2.4%). Ind’l level: Eau Clair,
Pittsfield.

Append demographic information matched by Public-Use Microdata
(PUMA) region from the American Community Survey (ACS).
– Most variation across geography, not time.
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Chains, Markets Served, & Uniform Pricing

fit to empirical income data relative to other parametric distributions. For each consumer in each

market, we establish whether using the share of households in each market which have children.22

Finally, we complement the IRI data with the time-series data for commodity costs of corn,

oats, rice, wheat, and sugar-sweeteners (e.g., high-fructose corn syrup) from Quandl and the Federal

Reserve Economic Data (FRED). We to generate time-series variation by product by interacting

these costs with product characteristics (i.e., type of primary grain and sugar content) and include

lags. These cost data enable us to identify time-series cost shocks which vary by brand but are

common across geographic markets. This accounts for the fact that brands are usually produced

in a single factory and shipped to stores.23

Motivating Evidence. We begin by addressing the prevalence of multi-store chains in the data.

In Figure 11, Panel (a) we demonstrate that 74% of chains contain more than one store and there is

a great deal of heterogenity in the number of stores within a chain. In Panel (b) we explore income

variation across the stores; i.e., we ask whether multi-store chains have stores which serve customers

of similar or dis-similar demographics? We do so by solving for the average income variance across

stores but within a chain. For example, a chain that has two stores where each store is located in

geographic areas where average income is $50,000 will have variance equal to zero while a chain

with stores in low-income and high-income locations will have positive variance. From panel (b) we

observe that chains do indeed locate their stores near consumers of differing income. In the event

consumer price-sensitivity varies systematically with income, these differences in location suggest

heterogeneity in price-sensitivity among consumers shopping at the chain leading to greater demand

curvature in the event of uniform pricing within the chain.

Figure 11: Evidence of Multi-Store Chains
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0 5 10 15 20 25 30
 

0
20
40
60
80

100
120
140

Fr
eq

ue
nc

y

Chains with More
than One Store: 74.34%

Number of Stores Within a Chain (b) Income Variation within a Chain ($000)

$5 $10 $15 $20 $25 $30 $35
 

0
20
40
60
80

100
120
140

Fr
eq

ue
nc

y

Chains with More
than One Store: 74.34%

Variation of Average Income Within a Chain

22Demographics are drawn independently as the data do not allow for conditional demographic draws; e.g., number
of consumers with income between $25,000 to $29,999 who also have children.

23We found that also including measures of distance between store and factory interacted with diesel fuel prices
yielded small and insignificant point-estimates in a simple first-stage price regression so we have not included fuel
prices in our specification.

– 36 –

Many multi-location chains in data.

Locations differ in income.

As in Della Vigna & Gentzkow (2017) and Hitsch, Hortacsu, & Lin
(2021), uniform pricing prevalent: for median product, chain fixed effects
explain 72% of variation in price; market fixed effects 31%.
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Specification

Quasi-linear indirect utility:

uijt = xjβ
?
i + α?i pjt + ξjt + εijt

Characteristic and price random coefficients are defined as

(
α∗i
β∗i

)
=

(
α
β

)
+ ΠDil + Σνil , νil ∼ N(0, In+1) ,

Flexible price-interactions:

α?i = α+ πkids × 1kids + πy × y(λ)i

where

y
(λ)
i ≡





yλi − 1

λ
, λ 6= 0

ln
(
yi
)
, λ = 0
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Estimation

Demand-side.

Estimator:

θ̂ = argmin
θ

{
g(θ)′Wg(θ)

}
, where g(θ) =

[
gM(θ)
gD(θ)

]

BLP moment conditions:

gM(θ) ≡ E
[
Z

′
ξ(θ)

]

where Z are MC instruments, including Zd to identify λ.

Micro moment conditions (gM(θ))

1. E[price|yi ∈ Qk]/E[price|yi ∈ Q1], k = 2, 3, 4 3. cov(kids, price)
2. E[yi|buy] 4. E[kids|buy]
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Table: IRI: Flexible DemandTable 2: Elasticity, Curvature, and Flexible Demand

Flexible Income Log-Income MNL

Elasticities
- Mean 2.14 2.93 1.90 2.16
- Median 2.14 2.91 1.88 2.14
- Stand. Dev. 0.45 0.67 0.44 0.53
- 90% 2.71 3.79 2.47 2.85
- 10% 1.55 2.06 1.34 1.49

Curvature
- Mean 1.09 1.01 1.03 1.00
- Median 1.08 1.01 1.03 1.00
- Stand. Dev. 0.05 0.02 0.03 0.01
- 90% 1.15 1.02 1.06 1.00
- 10% 1.04 0.98 1.01 0.99

Eeckhout and Unger, 2020; Grieco et al., 2021), inflation (Miravete, Seim and Thurk, 2022), tariffs

(De Loecker et al., 2016; Fajgelbaum, Goldberg, Kennedy and Khandelwal, 2019), and electric

vehicle subsidies (Xing, Leard and Li, 2021).

In Table 3 we present the model fit across different specifications. This table provides

the link connecting demand specification, identifying moments, estimated elasticity-curvature pairs

(Figure 13), and policy implications (Table 2). We find that all demand specifications are able

to match the moments not connected to price-income interactions (lower panel). Consistent with

the intuition illustrated by Figure 12 we find that only by adding flexibility to the price-income

interaction is the model capable of matching the consumption pattern across income quartiles.

Interestingly, we observe that all of the demand specifications match the consumption patterns of

high-income consumers which suggests that identification of the price-income coefficient (πp) comes

from the right-tail of the income distribution.30

Table 3: Matching Consumption Patterns

Moment Data Flexible (λ̂=2.31) Income (λ=1.00) Log-Income (λ=0.00) MNL

E[Price|IncomeQ2]/E[Price|IncomeQ1] 1.0011 1.0022 1.0128 1.0187 1.0000
E[Price|IncomeQ3]/E[Price|IncomeQ1] 1.0087 1.0091 1.0252 1.0250 1.0000
E[Price|IncomeQ4]/E[Price|IncomeQ1] 1.0492 1.0498 1.0478 1.0309 1.0000

Corr(Price,Kids) -0.0149 -0.0149 -0.0132 -0.0164 0.0000
E[Income|Buy] 0.9852 0.9851 0.9852 0.9851 1.0000
E[Kids|Buy] 1.2470 1.2469 1.2435 1.1492 1.0000

Jeff: Flexibility in price interactions shows up in Table 3. In the raw data, the top quartile

of income look very different than the bottom three quartiles. Imposing Income or log-income

constrains the GMM estimator so the distribution of price-sensitivity is somewhat hard-wired by

the researcher ex ante. We see an implication to elasticities and curvature in Table 2 and Figure

13.

30The model fit in Grieco et al. (2021) exhibits a similar pattern for moments constructed using the Consumer
expenditure Survey (CEX). Numerical experiments using the Berry et al. (1999) data suggest that estimation is
sensitive to the right-tail as well.
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Table: IRI: Matching Consumption Patterns

Table 2: Elasticity, Curvature, and Flexible Demand
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- 90% 2.71 3.79 2.47 2.85
- 10% 1.55 2.06 1.34 1.49
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- 90% 1.15 1.02 1.06 1.00
- 10% 1.04 0.98 1.01 0.99

Eeckhout and Unger, 2020; Grieco et al., 2021), inflation (Miravete, Seim and Thurk, 2022), tariffs

(De Loecker et al., 2016; Fajgelbaum, Goldberg, Kennedy and Khandelwal, 2019), and electric
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the intuition illustrated by Figure 12 we find that only by adding flexibility to the price-income

interaction is the model capable of matching the consumption pattern across income quartiles.

Interestingly, we observe that all of the demand specifications match the consumption patterns of

high-income consumers which suggests that identification of the price-income coefficient (πp) comes

from the right-tail of the income distribution.30

Table 3: Matching Consumption Patterns
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Corr(Price,Kids) -0.0149 -0.0149 -0.0132 -0.0164 0.0000
E[Income|Buy] 0.9852 0.9851 0.9852 0.9851 1.0000
E[Kids|Buy] 1.2470 1.2469 1.2435 1.1492 1.0000

Jeff: Flexibility in price interactions shows up in Table 3. In the raw data, the top quartile

of income look very different than the bottom three quartiles. Imposing Income or log-income

constrains the GMM estimator so the distribution of price-sensitivity is somewhat hard-wired by

the researcher ex ante. We see an implication to elasticities and curvature in Table 2 and Figure

13.

30The model fit in Grieco et al. (2021) exhibits a similar pattern for moments constructed using the Consumer
expenditure Survey (CEX). Numerical experiments using the Berry et al. (1999) data suggest that estimation is
sensitive to the right-tail as well.
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Alternative Specifications – Implications

Consider impact of demand specification on estimated consumer
welfare effects of uniform pricing:

Assuming firms set price a la multi-product Bertrand-Nash,
recover single product MC from observed uniform pricing.

Holding fixed estimated MCs and ownership patterns, predict
optimal store-level prices and optimal uniform prices for each
product.

Assess welfare implications of uniform pricing, relative to store-level
pricing, via compensating variation.

CV > 0→ consumer benefits from uniform pricing.

Miravete, Seim, Thurk (ε, ρ) & DCM
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Alternative Specifications – Consumer Welfare

where Vijlt(·) is given by (29). The mean compensating variation for agents living in location l is

CVl(p, p
′) =

∑

t

Mlt

∫

νl

∫

Dl

CVilt(p, p
′)dPD(Di)dPν(νi) . (45)

Residents in location l are thus on average better-off under uniform pricing when CVl(p) > 0. We

present the distribution of compensating variation (as a percent of location l cereal spend observed

in the data) in Figure 13.

Figure 13: Consumer Welfare Implications of Uniform Pricing
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The distribution on compensating variation, particularly the stand deviation, follows di-

rectly from each model’s ability to match the distribution of price-sensitivity (Table 3) and the

distribution of demand curvature (Table 2 and Figure 12) do say that heterogeneity matters more

than aggregate effects. Importantly, Figure 13 makes clear that providing the flexibility to match

the gradient of price-sensitivity in the data is an important ingredient to evaluate the welfare

implications of 3DPD , particularly to different consumers.

In Figure 14 we decompose the distributions of winners and losers 3DPD by demographics.

The implications of modelling price-sensitivities flexibly – or equivalently of allowing for flexibility

in the estimation of demand curvature – for welfare is made clear by looking at the welfare effects

of our flexible model and the discrete-choice models which restrict curvature ex ante by imposing

the distribution of price interactions. It is important to note that this difference stems from

differences in the distribution of estimated demand, particularly estimated demand curvatures.

These differences, in turn, stem from the identifying micro-moments from Table 3. As allowing

for more flexibility in estimating heterogeneity in price-sensitivity inherently nests the functional
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The spread of the distribution on compensating variation follows from each
models ability to match the distribution of price sensitivity and the distribution
of demand curvature.

All four specifications predict that on average, consumers are near indifferent
between targeted and uniform pricing, but models make different distributional
predictions (spread).

Miravete, Seim, Thurk (ε, ρ) & DCM
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Alternative Specifications – Winners & Losers of Uniform
Pricing
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We decompose the distributions of winners and losers of uniform pricing by
demographic group.

Allowing for flexibility in the estimation of demand curvature leads to very
different sign and magnitude of welfare effects.

Miravete, Seim, Thurk (ε, ρ) & DCM



Intro. Manifolds Q-L BLP Empirical Summary

Contribution

We explore the determinants of demand curvature estimates in aggregate
discrete choice models.

We show that a unit-demand BLP-style model can accommodate a wide
range of demand curvatures beyond MNL and up to CES .

We provide a flexible and parsimonious approach to specifying price

responsiveness.

Implementation uses the famous Box-Cox transform and
amounts to adding a single parameter.

Identification is straight-forward and intuitive.

Monte Carlo and empirical results indicate that this flexibility is
economically important for policy.

Miravete, Seim, Thurk (ε, ρ) & DCM
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Thank you!
www.eugeniomiravete.com

Miravete, Seim, Thurk (ε, ρ) & DCM
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Appendix
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BLP99: Effects by Geographic Origin Return
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Nevo’s Estimates Return

Table: Breakfast Cereal: Price Related Estimates

Means Std. Dev. Demographic Interactions (π′s) Manifold

Specification (α′s) (σ′s) log(Income) log(Income)2 Child ε ρ

[A] -62.7299 3.3125 588.3252 -30.1920 11.0546 3.62 1.06
(14.8032) (1.3402) (270.4410) (14.1012) (4.1226)

[B] -30.9982 2.0216 — — — 3.74 0.96
(0.9674) (0.9367) — — —

[C] -53.1367 — 444.7281 -22.3987 16.3664 3.60 1.08
(12.1023) — (209.6548) (10.7282) (4.7824)

[D] -30.8902 — — — — 3.74 0.96
(0.9944) — — — —

Notice that price random coefficients are significant but very small relative to
the demand slope estimates.

Demographic interactions are substantial.

Average elasticity estimates appear robust across different specifications.

Average curvatures are dangerously close to 1, with very different pass-through
rates implications. Do we need a structural model at all?

Averages say nothing about the distribution of (ε̂, ρ̂).

Miravete, Seim, Thurk (ε, ρ) & DCM


	Intro.
	Motivation
	Questions

	Manifolds
	(,)
	Nevo

	Q-L
	General
	Cases
	Mixing Distribution

	BLP
	Income Effects
	BLP99

	Empirical
	Summary
	MC
	Empirical
	Results

	Summary

