ELASTICITY AND CURVATURE OF DISCRETE CHOICE DEMAND MODELS

Eugenio J. Miravete¹ Katja Seim² Jeff Thurk³

¹University of Texas at Austin & CEPR

²Yale University & NBER

³University of Georgia

Cowles Conference on Models and Measurement, June 2023

Motivation

- Demand curvature is important for understanding price, quantity, and welfare effects of cost and policy changes, including taxation/exchange rate pass-through, efficiency gains of mergers, or nominal vs. real adjustment costs.
- Current empirical models are capable of "reasonable" substitution patterns.
- We don't know how modeling assumptions may limit estimates of demand curvature in discrete choice models.
- Is it possible to estimate robust demand curvatures using common, familiar methods?
- (How did we get here? Perhaps at the end if we have time...)

BERRY-HAILE (2021): HANDBOOK OF IO, VOL.4

Model Specification and Curvature Restrictions

 Non-parametrically methods deal with "reasonable" shape restrictions at a high computational cost, limiting their applicability.

- Compiani (2022); Magnolfi, McClure & Sorensen (2022)

- We focus on mixed-logit (*ML*) demand because the framework:
 - Can accommodate many products.
 - Is a workhorse model for research and policy.
 - Can approximate any random utility model.
 - McFadden & Train (2000)
- We offer a framework for researchers to avoid restricting the range of estimable demand curvature, and thus the predictions of our model on pass-through.

Contributions

- Ocument the sources of demand curvature in unit demand DCM consistent with utility maximization.
- On the Demand Manifold: Connecting elasticity and curvature and show how common modeling assumptions restrict their relationship.
- Modify the *ML* model to generate flexible estimates of both demand elasticity and curvature.
 - Quasilinear utility (shape of price R.C. distribution).
 - Income effects (shape of income subfunction).
- Empirical evidence Flexibility is economically meaningful:
 - Identification: Monte Carlo simulation (Q-L vs. Box-Cox).
 - Uniform pricing: Standard approaches bias consumer welfare evaluations (IRI: RTE-Cereal).

Demand Manifold

 Elasticity (ε) and curvature (ρ) are connected through the necessary and sufficient conditions of profit maximization (Mrázová-Neary, 2017).

$$\begin{split} p(q) + q \cdot p_q(q) &= p(q) \left[1 - \frac{1}{\varepsilon(q)} \right] = c > 0 \quad \Longleftrightarrow \quad \varepsilon(q) \equiv -\frac{p \cdot q_p(p)}{q(p)} > 1 \,, \\ 2p_q(q) + q \cdot p_{qq}(q) = p_q(q) \left[2 - \rho(q) \right] < 0 \qquad \Longleftrightarrow \quad \rho(q) \equiv \frac{q(p) \cdot q_{pp}(p)}{\left[q_p(p) \right]^2} < 2 \,, \end{split}$$

Miravete, Seim, Thurk (ε, ρ) & DCM

Pass-Through: Monopoly vs. Oligopoly

Markups (CRS single-product monopoly/oligopoly):

$$\frac{p-c}{p} = \frac{1}{\varepsilon}$$
; $\frac{p-c}{p} = \frac{\theta}{\varepsilon}$

Pass-through rate (Cournot, 1838 / Weyl-Fabinger, 2013):

$$\frac{dp}{dc} = \frac{1}{2 - \rho(q)} \qquad ; \qquad \frac{dp}{dc} = \frac{1}{1 + \theta(1 - \rho)} \, .$$

Miravete, Seim, Thurk $(\varepsilon, \rho) \& DCM$

Demand Subconvexity

OES is the only case where (ε, ρ) invariant to price:

$$\rho^{CES} = 1 + \frac{1}{\varepsilon^{CES}}.$$

CES is a useful limiting case which defines the area of "sub-convex" demand ⇔ Marshall's Second Law of Demand ⇒ Single-product oligopoly equilibrium exists (Caplin & Nalebuff, 1991).

Nevo's Elasticity and Curvature Estimates

- Use Nevo's simulated breakfast cereal data to explore model predictions for different preference specifications.
- Comparing the full R.C. and *ML* model suggests that model specification matters for pass-through analysis.
- Price R.C. and price interactions also appear to increase the range of demand curvature estimates (not reported).
- The average elasticity and curvature estimates do not vary too much but their distributions change dramatically.

Distributions of Price Sensitivity

- Including price-demographic interactions lead to very asymmetric empirical distributions of individual demand slopes.
- MNL does not allow for any price response heterogeneity.

General Price Distribution

- We present general manifold expressions.
- We first consider the following generalization of Nevo's model where $\Phi(0,1)$ is a non-necessarily symmetric distribution:

$$u_{ij} = x_j \beta_i^* + f_i(y_i, p_j) + \xi_j + \epsilon_{ij}, \qquad i \in \mathcal{I}, \ j \in \mathcal{J}, \ \epsilon_{ij} \sim \text{EV1},$$

$$\beta_i^{\star} = \beta + \sigma_x \nu_i \,, \qquad \qquad \nu_i \sim N(0, I_n) \,,$$

$$f_i(y_i, p_j) = \alpha_i^* (y_i - p_j) = (\alpha + \sigma_p \phi_i) \times (y_i - p_j), \quad \phi_i \sim \Phi(0, 1),$$

- Choice of mixing distribution is an integral part of model specification.
 - McFadden and Train (2000)

Logit Demand

• Utility maximization: Individual i purchases her preferred product j if:

$$q_{ij}(p) = \mathbf{1} (u_{ij} \ge u_{ik}, \forall k \in \{0, 1, \dots, J\}),$$

 Because of i.i.d. EV1 of ε_{ij}, individual i's choice probability of product j is:

$$\mathbb{P}_{ij}(p) = \frac{\exp\left(x_j\beta_i^{\star} - \alpha_i^{\star}p_j + \xi_j\right)}{\sum\limits_{k=0}^{J} \exp\left(x_k\beta_i^{\star} - \alpha_i^{\star}p_k + \xi_k\right)},$$

Intermediate Results

• Consider a measure G(i) of heterogeneous individuals. Total demand for product j is:

$$Q_j(p) = \int_{i \in \mathcal{I}} \mathbb{P}_{ij}(p) \, dG(i) \, .$$

• Derivatives of the utility's price subfunction (general case):

$$f'_{ij} = \frac{\partial f_i(y_i, p_j)}{\partial p_j}$$
, and $f''_{ij} = \frac{\partial^2 f_i(y_i, p_j)}{\partial p_j^2}$.

• Consider the Bernouilli distribution (choice of one product):

$$\begin{split} \mu_{ij} &= \mathbb{P}_{ij} ,\\ \sigma_{ij}^2 &= \mathbb{P}_{ij} (1 - \mathbb{P}_{ij}) ,\\ sk_{ij} &= \mathbb{P}_{ij} (1 - \mathbb{P}_{ij})^2 - \mathbb{P}_{ij}^2 (1 - \mathbb{P}_{ij}) = \sigma_{ij}^2 (1 - 2\mathbb{P}_{ij}) . \end{split}$$

Main Results

• Demand elasticity, curvature and manifold are:

$$\begin{split} \varepsilon_{j}(p) &= -\frac{p_{j}}{Q_{j}(p)} \int_{i \in \mathcal{I}} f'_{ij} \cdot \sigma_{ij}^{2} \, dG(i) \,, \\ \rho_{j}(p) &= \int_{i \in \mathcal{I}} \mu_{ij} \, dG(i) \times \frac{\int f'_{ij} \cdot \sigma_{ij}^{2} \, dG(i) \, + \int \left(f'_{ij}\right)^{2} \cdot sk_{ij} \, dG(i)}{\left[\int f'_{ij} \cdot \sigma_{ij}^{2} \, dG(i)\right]^{2}} \end{split}$$

Main Results

• Demand elasticity, curvature and manifold are:

$$\begin{split} \varepsilon_j(p) &= -\frac{p_j}{Q_j(p)} \int\limits_{i \in \mathcal{I}} f'_{ij} \cdot \sigma_{ij}^2 \, dG(i) \,, \\ \rho_j(p) &= \int\limits_{i \in \mathcal{I}} \mu_{ij} \, dG(i) \times \frac{\int f''_{ij} \cdot \sigma_{ij}^2 \, dG(i) + \int \left(f'_{ij}\right)^2 \cdot sk_{ij} \, dG(i)}{\left[\int f'_{ij} \cdot \sigma_{ij}^2 \, dG(i)\right]^2} \,. \end{split}$$

• Demand manifold is therefore:

$$\rho_j[\varepsilon_j(p)] = p_j^2 \cdot \frac{Q_j(p)}{\varepsilon_j^2(p)} \cdot \left[\int f_{ij}'' \cdot \sigma_{ij}^2 \, dG(i) + \int \left(f_{ij}' \right)^2 \cdot sk_{ij} \, dG(i) \right].$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

MNL: $\alpha_i^{\star} = \alpha; \beta_i^{\star} = \beta$

• Demand elasticity and curvature for *MNL* are:

$$\varepsilon_j(p) = \alpha p_j \left(1 - \mathbb{P}_j \right),$$
$$\rho_j(p) = \frac{1 - 2\mathbb{P}_j}{1 - \mathbb{P}_j} < 1.$$

• And the demand manifold is:

$$\rho_j(p) = \frac{\alpha p_j (1 - 2\mathbb{P}_j)}{\varepsilon_j(p)} \,.$$

• *MNL* is *always* log-concave (it imposes incomplete pass-through).

MNL: $\alpha; \beta$

- Consider a monopolist: one inside good with utility $u_{ij} = 1 0.5p_j + \epsilon_{ij}$.
- Logit manifold. For any given curvature, a larger market share of the product makes demand less elastic or, alternatively, for any given elasticity, a larger market share reduces demand curvature.

MNL with Attribute Heterogeneity: α ; β_i^{\star}

- Random coefficients of attributes allow for flexible substitution patters.
- Random coefficients of attributes cannot generate more than complete pass-through if log-concave distributed. – Caplin-Nalebuff (1991)

MNL with Price Heterogeneity: $\alpha_i^{\star}; \beta_i$

Mixed Logit Demand Manifolds

• Price random coefficients to expand the range of estimable curvatures within a unit demand discrete choice model.

The Shape of the Mixing Distribution

- Skewness of the mixing distribution allows for greater curvature.
- If demand estimates fall in the sub-convex region, a common cost increase for a multiproduct firm results in a markup reduction for *all* its products and not only for a subset (when some of these estimates fall into the super-convex region).
- Symmetric R.C. distributions may restrict the range of estimable curvatures and bias demand elasticity estimates upwards.

Discussion

- Choosing the shape of the distribution is not trivial Combining normal and lognormal allows us to cover nearly all the set of sub-convex demands.
- Asymmetric distributions have been used to ensure that all individuals show responses to price or attributes of the same sign. – Train (2009)
- We can capture nearly all the sub-convex region with a flexible distribution of price sensitivity:
- *CES* now rationalized by the distribution of price-sensitivities (α_i) .

BLP: Discrete Choice with Income Effects

• Remember that Nevo's quasi-linear preferences implied the following utility subfunction:

$$f_i(y_i, p_j) = \alpha \big(y_i - p_j \big).$$

• *BLP* does not include random coefficients on prices but rather they allow for expenses in other products to depend on income:

$$f_i(y_i, p_j) = \alpha \ln (y_i - p_j).$$

• An obvious generalization involves the use of the Box-Cox Transformation:

$$f_i(y_i, p_j) = \alpha (y_i - p_j)^{(\lambda)} = \begin{cases} \alpha \frac{(y_i - p_j)^{\lambda} - 1}{\lambda}, & \text{if } \lambda \neq 0, \\ \alpha \ln (y_i - p_j), & \text{if } \lambda = 0. \end{cases}$$

BLP99 Approximation

• For practical reasons most applications including income effects follow the specification of *BLP*99, which is close to a Maclaurin first order approximation:

$$f_i(y_i, p_j) \simeq \alpha \ln y_i - \frac{\alpha}{y_i} p_j \approx -\alpha_i^* p_j.$$

More generally, using Box-Cox:

$$f_i(y_i, p_j) = \alpha (y_i - p_j)^{(\lambda)} \simeq \alpha y_i^{(\lambda)} - \frac{\alpha p_j}{y^{1-\lambda}}.$$

- Thus, we allow data to pin down the strength of income effects through more flexible price sensitivity formulation that is still (roughly) consistent with utility maximization (Roy's Identity).
- $\lambda = 0 \rightarrow BLP$ 99; $\lambda = 1 \rightarrow$ quasi-linear (MNL).

Income Effects: Box-Cox Transformation, λ

- Income effects play the same role than the distribution of price random coefficient in expanding the range of estimable demand curvatures.
- For any given λ the resulting pass-through estimate is critically determined by the empirical income distribution.

BLP99: Effects by Price Segments

Miravete, Seim, Thurk

 (ε, ρ) & DCM

Demand for Automobiles

TABLE	: Incon	ne Effec	ts, Mar	kups, ar	nd Pass-	Throug	n Rate	5
	λ :	= 0	$\lambda =$	0.5	$\lambda =$	0.75	χ	. = 1
ε	2.28	(0.26)	2.25	(0.48)	2.52	(1.01)	2.73	(2.05)
ho	1.43	(0.08)	1.31	(0.07)	1.15	(0.05)	0.99	(0.01)
Markup (%)	44.41	(5.26)	46.25	(8.77)	44.48	(13.77)	48.12	(20.55)
Pass-Through (%)	178.99	(18.33)	145.91	(16.38)	117.90	(7.27)	99.41	(0.01)

- Quasilinear MNL specification (λ = 1; α^{*}_i = α) always predicts full pass-through at the cost of excessively elastic demand.
- BLP99 specification (λ = 0; α^{*}_i = α/y_i) leads to larger pass-through rates.
- Averages differ but dispersion for elasticity and markups are also more pronounced for quasilinear preferences while the opposite is true for curvature and pass-through for *BLP*99 – important heterogeneous implications of counterfactual analysis.

Summary of Theoretical Results

- Robust estimates of demand curvature requires flexible specification of price interactions with consumer heterogeneity.
- A way of doing so is allowing price sensitivity to vary with observed demographics, e.g., income.
- Flexible interaction of demographics with prices is useful to account for pass-through in oligopoly with a parsimonious one-parameter transformation (Box-Cox) that modulates curvature:

$$u_{ij} = x_j \beta_i^{\star} + f_i(y_i, p_j) + \xi_j + \epsilon_{ij}$$

Income Effects: $f_i(y_i, p_j) = \alpha (y_i - p_j)^{(\lambda)}$ Quasilinear: $f_i(y_i, p_j) = \alpha D_i^{(\lambda)} p_j$

• How to identify λ ?

Monte Carlo: Data Generating Process

$$u_{ijt} = \underbrace{\beta_0}_{\substack{\text{Common} \\ \text{Across} \\ \text{Consumers}}} + \underbrace{\sum_{k=1}^{K} \left(\beta_X^k + \sigma_X^k \nu_i^k\right) x_{jt}^k}_{\substack{\text{Idiosyncratic} \\ \text{Characteristic Tastes}}} - \underbrace{\alpha \cdot p_{jt} \cdot y_{it}^{\lambda-1}}_{\substack{\text{Idiosyncratic} \\ \text{Price Sensitivities}}} + \xi_{jt} + \epsilon_{ijt} \,,$$

() Indirect utility with income effects: J = 20, T = 100, I = 1000

- **2** Two (K=2) observable attributes (x^k) with common (β_X^k) and idiosyncratic (σ_X^k) valuations.
- Income y_{it} iid LogNormal as in Andrews, Gentzkow & Shapiro (2017) + time variation.
- **(**) Researcher knows cost shocks ω_{jt} and marginal cost function (log-linear).
- Solve for equilibrium prices s.t. inside share = 20% and $\overline{\varepsilon}$ =2.5 \Rightarrow (β_0, α).

Identification

• Identify σ_X^k via Gandhi & Houde (2020) Differentiation IVs:

$$Z_{jt}^{x,k} = \sum_{r} \left(x_{rt}^k - x_{jt}^k \right)^2$$

• We've already shown that price RC generates curvature so can use this IV as a measure of average curvature:

$$Z_{jt}^p = \sum_r \left(\hat{p}_{rt} - \hat{p}_{jt} \right)^2$$

where \hat{p} comes from hedonic pricing regression using ω_{jt} .

• Identify λ by interacting curvature measure (Z^p) with distribution moments:

$$Z^d_t = Z^p_t \otimes \left\{ \mathsf{inc}_t^{10\%}, \, \mathsf{inc}_t^{50\%}, \, \mathsf{inc}_t^{90\%} \right\}.$$

Idea: Skewness of price interactions determines curvature \Rightarrow interact pass-through measure with moments from the distribution.

• Consider the case of two consumers with linear demand curves of different slope.

Left Panel

- Suppose monopolist can set prices for each individual.
- Marginal cost is \$2 and decreases by \$1. How does the firm respond?
- Firm decreases price by \$0.5 for both consumers.

Right Panel

- Constrain the firm to uniform pricing.
- Marginal cost is \$2 and decreases by \$1. How does the firm respond?
- Firm decreases price by \$2.0.
- The cost reduction resulted in firm setting a price such that the price-sensitive consumer participates.

Discussion

- Pass-through could be over-shifted w/ uniform pricing + heterogeneous price-sensitivity.
- The effect of a cost shift is different at different price levels!
- Widespread evidence of overshifting and uniform pricing in retail.

Results - Parameters

Scenario	Scenario α (varies)		λ (varies)		$\sigma_x = 5$		$\sigma_0 = 5$	
True-Specification	A.Bias	RMSE	A.Bias	RMSE	A.Bias	RMSE	A.Bias	RMSE
1: log-log	0.003	0.161	0.000	0.000	-0.006	0.072	-0.012	0.231
2: linear–linear	0.001	0.011	_	_	0.015	0.090	-0.082	0.947
3: BC–BC	0.000	0.037	-0.001	0.024	0.006	0.079	-0.001	0.735
4: log–BC	0.331	0.379	0.005	0.006	-0.012	0.070	0.025	0.121
5: linear–BC	-0.031	0.048	-0.060	0.085	0.006	0.091	0.093	1.109
6: BC–log	-15.514	15.612	-	-	0.851	0.947	-2.211	2.218
7: BC-linear	0.248	0.248	-	-	0.015	0.091	-0.272	0.987

O Scenarios 1–3: MC recovers true parameters when correctly specified.

Results - Parameters

Scenario	ario $lpha$ (varies		ies) λ (varies)		σ_x	= 5	$\sigma_0 = 5$	
True-Specification	A.Bias	RMSE	A.Bias	RMSE	A.Bias	RMSE	A.Bias	RMSE
1: log–log	0.003	0.161	0.000	0.000	-0.006	0.072	-0.012	0.231
2: linear–linear	0.001	0.011	-	-	0.015	0.090	-0.082	0.947
3: BC–BC	0.000	0.037	-0.001	0.024	0.006	0.079	-0.001	0.735
4: log–BC	0.331	0.379	0.005	0.006	-0.012	0.070	0.025	0.121
5: linear–BC	-0.031	0.048	-0.060	0.085	0.006	0.091	0.093	1.109
6: BC–log	-15.514	15.612	-	-	0.851	0.947	-2.211	2.218
7: BC-linear	0.248	0.248	-	-	0.015	0.091	-0.272	0.987

O Scenarios 1–3: MC recovers true parameters when correctly specified.

Scenarios 4–5: Estimator recovers true parameters of nested simpler DGPs.

Results - Parameters

α (varies)		λ (varies)		$\sigma_x = 5$		$\sigma_0 = 5$	
A.Bias	RMSE	A.Bias	RMSE	A.Bias	RMSE	A.Bias	RMSE
0.003	0.161	0.000	0.000	-0.006	0.072	-0.012	0.231
0.001	0.011	-	-	0.015	0.090	-0.082	0.947
0.000	0.037	-0.001	0.024	0.006	0.079	-0.001	0.735
0.331	0.379	0.005	0.006	-0.012	0.070	0.025	0.121
-0.031	0.048	-0.060	0.085	0.006	0.091	0.093	1.109
-15.514	15.612	-	-	0.851	0.947	-2.211	2.218
0.248	0.248	-	-	0.015	0.091	-0.272	0.987
	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c } \hline α (varies) \\ \hline $A.Bias$ $RMSE$ \\ \hline 0.003 0.161 \\ \hline 0.001 0.011 \\ \hline 0.000 0.037 \\ \hline 0.331 0.048 \\ \hline -0.331 0.048 \\ \hline -15.514 15.612 \\ \hline 0.248 0.248 \\ \hline \end{tabular}$	$\begin{array}{c c} \alpha \ (\text{varies}) & \lambda \ (\text{varies}) \\ \hline A.Bias & RMSE & A.Bias \\ \hline 0.003 & 0.161 & 0.000 \\ 0.001 & 0.011 & - \\ 0.000 & 0.037 & -0.001 \\ 0.331 & 0.379 & 0.005 \\ -0.031 & 0.048 & -0.060 \\ \hline -15.514 & 15.612 & - \\ 0.248 & 0.248 & - \\ \hline \end{array}$	$\begin{array}{c c} \alpha \ (\text{varies}) & \lambda \ (\text{varies}) \\ \hline A.Bias & RMSE & A.Bias & RMSE \\ \hline 0.003 & 0.161 & 0.000 & 0.000 \\ 0.001 & 0.011 & - & - \\ 0.000 & 0.037 & -0.001 & 0.024 \\ 0.331 & 0.379 & 0.005 & 0.006 \\ -0.031 & 0.048 & -0.060 & 0.085 \\ \hline -15.514 & 15.612 & - & - \\ 0.248 & 0.248 & - & - \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\label{eq:alpha} \begin{array}{ c c c c c c c } \hline \alpha \ (\text{varies}) & \hline \lambda \ (\text{varies}) & \hline \sigma_x = 5 \\ \hline A.Bias & RMSE & \hline A.Bias & RMSE & \hline A.Bias & RMSE \\ \hline 0.003 & 0.161 & 0.000 & 0.000 & -0.006 & 0.072 \\ 0.001 & 0.011 & - & - & 0.015 & 0.090 \\ 0.000 & 0.037 & -0.001 & 0.024 & 0.006 & 0.079 \\ 0.331 & 0.379 & 0.005 & 0.006 & -0.012 & 0.070 \\ -0.031 & 0.048 & -0.060 & 0.085 & 0.006 & 0.091 \\ \hline -15.514 & 15.612 & - & - & 0.851 & 0.947 \\ 0.248 & 0.248 & - & - & 0.015 & 0.091 \\ \hline \end{array}$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

O Scenarios 1–3: MC recovers true parameters when correctly specified.

- Scenarios 4–5: Estimator recovers true parameters of nested simpler DGPs.
- Scenarios 6–7: Common (miss-)specifications introduce bias.

Results - Biases Matter

Scenario	Coeff.Var		М.	AB	Corr.		
True-Specification	DGP	EST.	ε	ρ	(ε, ρ)	$(\hat{arepsilon},\hat{ ho})$	
1. log-log	-3.81	-3 79	0.00	0.00	0.66	0.66	
2: linear-linear	0.00	0.00	0.00	0.00	0.66	0.66	
3: BC–BC	-0.57	-0.57	0.00	0.00	-0.47	-0.47	
4: log-BC	-3.81	-3.77	0.00	0.00	-0.47	-0.47	
5: linear–BC	0.00	-0.11	0.00	-0.01	-0.44	-0.43	
6: BC-log	-0.57	-3.77	0.55	-0.69	-0.44	0.63	
7: BC-linear	-0.57	0.00	-0.16	0.22	-0.44	-0.43	

() Scenarios 1–3: MC recovers (ε, ρ) when correctly specified.

Results - Biases Matter

Scenario	Coeff	. Var	М	AB	Corr.		
True-Specification	DGP	EST.	ε	ρ	(ε, ρ)	$(\hat{arepsilon},\hat{ ho})$	
1: log–log	-3.81	-3.79	0.00	0.00	0.66	0.66	
2: linear-linear	0.00	0.00	0.00	0.00	0.66	0.66	
3: BC–BC	-0.57	-0.57	0.00	0.00	-0.47	-0.47	
4: log–BC	-3.81	-3.77	0.00	0.00	-0.47	-0.47	
5: linear–BC	0.00	-0.11	0.00	-0.01	-0.44	-0.43	
6: BC–log	-0.57	-3.77	0.55	-0.69	-0.44	0.63	
7: BC-linear	-0.57	0.00	-0.16	0.22	-0.44	-0.43	

() Scenarios 1–3: MC recovers (ε, ρ) when correctly specified.

2 Scenarios 4–5: Estimator recovers (ε, ρ) of nested simpler DGPs.

Results - Biases Matter

Scenario	Coef	f.Var	N	ÍAB	Corr.		
True-Specification	DGP	EST.	ε	ρ	(ε, ρ)	$(\hat{arepsilon},\hat{ ho})$	
1: log-log	-3.81	-3.79	0.00	0.00	0.66	0.66	
2: linear-linear	0.00	0.00	0.00	0.00	0.66	0.66	
3: BC–BC	-0.57	-0.57	0.00	0.00	-0.47	-0.47	
4: log–BC	-3.81	-3.77	0.00	0.00	-0.47	-0.47	
5: linear–BC	0.00	-0.11	0.00	-0.01	-0.44	-0.43	
6: BC–log	-0.57	-3.77	0.55	-0.69	-0.44	0.63	
7: BC-linear	-0.57	0.00	-0.16	0.22	-0.44	-0.43	

() Scenarios 1–3: MC recovers (ε, ρ) when correctly specified.

- **2** Scenarios 4–5: Estimator recovers (ε, ρ) of nested simpler DGPs.
- **3** Scenarios 6–7: Common (miss-)specifications generated biased $(\hat{\varepsilon}, \hat{\rho})$:
 - Biased own- and cross-price elasticities \Rightarrow antitrust implications.
 - Biased curvature ⇒ pass-through (*e.g.*, inflation) and trade implications.

Question and Empirical Strategy

Motivation:

- Increased access to customer data & sophisticated pricing raises concern about distributional implications. – CEA (2015)
- Welfare effects of 3^{*rd*}-degree price discrimination (3DPD) driven by relative curvature of local demands. Aguirre, Cowan & Vickers (2010)
- **Research Question:** How does the specification of demand affect our estimate of the consumer welfare implications of 3DPD?

• Approach:

- Mixed-Logit demand estimation using store-level RTE cereal data.
- Recover upstream marginal cost of each product based on multi-product firm portfolios under uniform pricing across stores in given market.

• Experiment: Given recovered marginal cost and preferences, allow products' prices to vary by store & recompute equilibrium prices.

IRI: Breakfast Cereal

- Weekly scanner data for ready-to-eat (RTE) cereal from 2007–2011.
- Product defined brand-flavor pair; *e.g.*, Kellogg's Special K Fruit & Yogurt.
- Serving defined as one ounce.
- Potential market identified via milk and paper towels.

- Backus, Conlon & Sinkinson (2021)

- Focus on products which account for 85% of sales.
- Large markets with geographic spread: Boston (5.2% of revenue), Philadelphia (4.5%), Chicago (4.2%), San Francisco (3.0%), Seattle (2.5%), Houston (2.5%), and St Louis (2.4%). Ind'I level: Eau Clair, Pittsfield.
- Append demographic information matched by Public-Use Microdata (PUMA) region from the American Community Survey (ACS).
 - Most variation across geography, not time.

Chains, Markets Served, & Uniform Pricing

- Many multi-location chains in data.
- Locations differ in income.
- As in Della Vigna & Gentzkow (2017) and Hitsch, Hortacsu, & Lin (2021), uniform pricing prevalent: for median product, chain fixed effects explain 72% of variation in price; market fixed effects 31%.

Specification

• Quasi-linear indirect utility:

$$u_{ijt} = x_j \beta_i^\star + \alpha_i^\star p_{jt} + \xi_{jt} + \epsilon_{ijt}$$

• Characteristic and price random coefficients are defined as

$$\begin{pmatrix} \alpha_i^* \\ \beta_i^* \end{pmatrix} = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} + \Pi D_{il} + \Sigma \nu_{il} , \quad \nu_{il} \sim N(0, I_{n+1}) ,$$

• Flexible price-interactions:

$$\alpha_i^{\star} = \alpha + \pi^{\mathsf{kids}} \times \mathbb{1}^{\mathsf{kids}} + \pi^y \times y_i^{(\lambda)}$$

where

$$\boldsymbol{y_i^{(\lambda)}} \equiv \begin{cases} & \frac{y_i^{\lambda} - 1}{\lambda} , \quad \lambda \neq 0 \\ & \ln(y_i) , \quad \lambda = 0 \end{cases}$$

Estimation

- Demand-side.
- Estimator:

$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} \ \left\{ g(\theta)'Wg(\theta) \right\}, \ \text{where} \ g(\theta) = \begin{bmatrix} g^{\mathsf{M}}(\theta) \\ g^{\mathsf{D}}(\theta) \end{bmatrix}$$

• *BLP* moment conditions:

$$g^{\mathsf{M}}(\theta) \equiv E\left[Z^{'}\xi(\theta)\right]$$

where Z are MC instruments, including Z^d to identify λ .

• Micro moment conditions $(g^{M}(\theta))$

 $\begin{array}{ll} 1. \ E[price|y_i \in Q_k]/E[price|y_i \in Q_1], k=2,3,4 & 3. \ {\rm cov}({\rm kids}, price) \\ 2. \ E[y_i|{\rm buy}] & 4. \ E[{\rm kids}|{\rm buy}] \end{array}$

MIRAVETE, SEIM, THURK $(\varepsilon, \rho) \& DCI$

	Flexible	Income	Log-Income	MNL
Elasticities				
- Mean	2.14	2.93	1.90	2.16
- Median	2.14	2.91	1.88	2.14
- Stand. Dev.	0.45	0.67	0.44	0.53
- 90%	2.71	3.79	2.47	2.85
- 10%	1.55	2.06	1.34	1.49
Curvature				
- Mean	1.09	1.01	1.03	1.00
- Median	1.08	1.01	1.03	1.00
- Stand. Dev.	0.05	0.02	0.03	0.01
- 90%	1.15	1.02	1.06	1.00
- 10%	1.04	0.98	1.01	0.99

TABLE: IRI: Flexible Demand

TABLE: IRI: Matching Consumption Patterns

Moment	Data	Flexible ($\hat{\lambda} = 2.31$)	Income ($\lambda = 1.00$)	Log-Income ($\lambda = 0.00$)	MNL
$\mathbb{E}[\operatorname{Price} \operatorname{Income}Q_2]/\mathbb{E}[\operatorname{Price} \operatorname{Income}Q_1]$	1.0011	1.0022	1.0128	1.0187	1.0000
$\mathbb{E}[\operatorname{Price} \operatorname{Income}Q_3]/\mathbb{E}[\operatorname{Price} \operatorname{Income}Q_1]\\\mathbb{E}[\operatorname{Price} \operatorname{Income}Q_4]/\mathbb{E}[\operatorname{Price} \operatorname{Income}Q_1]$	1.0087 1.0492	1.0091 1.0498	1.0252 1.0478	1.0250 1.0309	1.0000 1.0000
Corr(Price,Kids)	-0.0149	-0.0149	-0.0132	-0.0164	0.0000
E[Income Buy] E[Kids Buy]	0.9852 1.2470	0.9851 1.2469	0.9852 1.2435	0.9851 1.1492	1.0000 1.0000

MIRAVETE, SEIM, THURK (ε, ρ) & DCM

Alternative Specifications – Implications

- Consider impact of demand specification on estimated consumer welfare effects of uniform pricing:
 - Assuming firms set price a la multi-product Bertrand-Nash, recover single product MC from observed uniform pricing.
 - Holding fixed estimated MCs and ownership patterns, predict optimal store-level prices and optimal uniform prices for each product.
- Assess welfare implications of uniform pricing, relative to store-level pricing, via compensating variation.
 - $CV > 0 \rightarrow$ consumer benefits from uniform pricing.

Alternative Specifications – Consumer Welfare

- The spread of the distribution on compensating variation follows from each models ability to match the distribution of price sensitivity and the distribution of demand curvature.
- All four specifications predict that on average, consumers are near indifferent between targeted and uniform pricing, but models make different distributional predictions (spread).

MIRAVETE, SEIM, THURK (ε, ρ) & DCM

Alternative Specifications – Winners & Losers of Uniform Pricing

- We decompose the distributions of winners and losers of uniform pricing by demographic group.
- Allowing for flexibility in the estimation of demand curvature leads to very different sign and magnitude of welfare effects.

CONTRIBUTION

- We explore the determinants of demand curvature estimates in aggregate discrete choice models.
- We show that a unit-demand *BLP*-style model can accommodate a wide range of demand curvatures beyond *MNL* and up to *CES*.
- We provide a flexible and parsimonious approach to specifying price responsiveness.
 - Implementation uses the famous Box-Cox transform and amounts to adding a single parameter.
 - Identification is straight-forward and intuitive.
- Monte Carlo and empirical results indicate that this flexibility is economically important for policy.

THANK YOU!

WWW.EUGENIOMIRAVETE.COM

MIRAVETE, SEIM, THURK $(\varepsilon, \rho) \& DCM$

APPENDIX

MIRAVETE, SEIM, THURK $(\varepsilon, \rho) \& DCM$

BLP99: Effects by Geographic Origin

Miravete, Seim, Thurk (s

 (ε, ρ) & DCM

Nevo's Estimates

TABLE: Breakfast Cereal: Price Related Estimates

	Means	Std. Dev.	Demograp	Demographic Interactions $(\pi's)$				
Specification	$(\alpha' s)$	$(\sigma' s)$	log(INCOME)	$\log(\text{Income})^2$	CHILD	ε	ρ	
[A]	-62.7299 (14.8032)	3.3125 (1.3402)	588.3252 (270.4410)	-30.1920 (14.1012)	11.0546 (4.1226)	3.62	1.06	
[B]	-30.9982 (0.9674)	2.0216 (0.9367)	_	Ξ	_	3.74	0.96	
[C]	-53.1367 (12.1023)	_	444.7281 (209.6548)	-22.3987 (10.7282)	16.3664 (4.7824)	3.60	1.08	
[D]	-30.8902 (0.9944)	_	_	_	_	3.74	0.96	

- Notice that price random coefficients are significant but very small relative to the demand slope estimates.
- Demographic interactions are substantial.
- Average elasticity estimates appear robust across different specifications.
- Average curvatures are dangerously close to 1, with very different pass-through rates implications. Do we need a structural model at all?
- Averages say nothing about the distribution of (
 ε̂, *ρ̂*).