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INTRO. MOTIVATION QUESTIONS

Motivation

@ Demand curvature is important for understanding price, quantity,
and welfare effects of cost and policy changes, including
taxation/exchange rate pass-through, efficiency gains of mergers, or
nominal vs. real adjustment costs.

@ Current empirical models are capable of “reasonable” substitution
patterns.

o We don't know how modeling assumptions may limit estimates of
demand curvature in discrete choice models.

@ Is it possible to estimate robust demand curvatures using common,
familiar methods?

o (How did we get here? — Perhaps at the end if we have time...)
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INTRO. MOTIVATION QUESTIONS

BERRY-HAILE (2021): HANDBOOK OF 10, VoL.4

These substitution patterns drive answers to many questions of interest
— e.g., the sizes of markups or outcomes under a counterfactual merger.
However, other kinds of counterfactuals can require flexibility in other
dimensions. For example, “pass-through” (e.g., of a tariff, tax, or
technologically driven reduction in marginal cost) depends critically on
second derivatives of demand. It is not clear that a mixed-logit model is
very flexible in this dimension.
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INTRO. MOTIVATION QUESTIONS

Model Specification and Curvature Restrictions

@ Non-parametrically methods deal with “reasonable” shape
restrictions at a high computational cost, limiting their applicability.

— Compiani (2022); Magnolfi, McClure & Sorensen (2022)

o We focus on mixed-logit (ML) demand because the framework:
o Can accommodate many products.
o Is a workhorse model for research and policy.

o Can approximate any random utility model.

— McFadden & Train (2000)

@ We offer a framework for researchers to avoid restricting the range
of estimable demand curvature, and thus the predictions of our
model on pass-through.
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INTRO. MOTIVATION QUESTIONS

Contributions

@ Document the sources of demand curvature in unit demand DCM
consistent with utility maximization.

© The Demand Manifold: Connecting elasticity and curvature and
show how common modeling assumptions restrict their relationship.

© Modify the ML model to generate flexible estimates of both
demand elasticity and curvature.

o Quasilinear utility (shape of price R.C. distribution).

o Income effects (shape of income subfunction).

© Empirical evidence — Flexibility is economically meaningful:

o Identification: Monte Carlo simulation (Q-L vs. Box-Cox).

o Uniform pricing: Standard approaches bias consumer welfare
evaluations (IRI: RTE-Cereal).
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@ Elasticity (g) and curvature (p) are connected through the necessary and sufficient conditions of profit
maximization (Mrazova-Neary, 2017).

p(q) + q-pq(q) = p(q) {1—i] =c>0 <= E(q)E—Lp(p)>L
e(q) a(p)
2pq(@) + 4-Paq(a) = Pa()) 2 — p()] <0 > p(q) = L2 ) o

[‘Zp (pﬂ 2




—— Theoretical — - Empirical

Average Pass-through (dp/dc)

Average Demand Curvature (p)

@ Markups (CRS single-product monopoly/oligopoly):

p—c 1 p—c 7

P € P €
@ Pass-through rate (Cournot, 1838 / Weyl-Fabinger, 2013):
dp 1 dp 1

de  2—p(e) ' de 14+0(1-p)




Demand Subconvexity

Demand Elasticity (¢)
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@ CES is the only case where (e, p) invariant to price:

1
CES _
P 71+ECES'

@ CES is a useful limiting case which defines the area of “sub-convex” demand <> Marshall's Second Law of
Demand = Single-product oligopoly equilibrium exists (Caplin & Nalebuff, 1991).
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Nevo's Elasticity and Curvature Estimates
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(A) Full Model (B) Multinomial Logit

Use Nevo's simulated breakfast cereal data to explore model predictions for
different preference specifications.

©

Comparing the full R.C. and ML model suggests that model specification
matters for pass-through analysis.

©

Price R.C. and price interactions also appear to increase the range of demand
curvature estimates (not reported).

The average elasticity and curvature estimates do not vary too much but their
distributions change dramatically.
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Distributions of Price Sensitivity
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@ Including price-demographic interactions lead to very asymmetric empirical
distributions of individual demand slopes.

@ MNL does not allow for any price response heterogeneity.




GENERAL CASES MIXING DISTRIBUTION

General Price Distribution
@ We present general manifold expressions.

@ We first consider the following generalization of Nevo's model where
®(0,1) is a non-necessarily symmetric distribution:
wij = B} + fi(yi,pj) + & + €ij s i€Z, j€J, e ~EVL,
ﬂ::/g+017/¢7 ViNN(O7I’"«)7

filyi,ps) = of (yi —pj) = (e +0pi) X (y: — ), ¢ ~ @(0,1),
@ Choice of mixing distribution is an integral part of model

specification.

— McFadden and Train (2000)
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GENERAL CASES MIXING DISTRIBUTION

Logit Demand

o Utility maximization: Individual 7 purchases her preferred product j
if:
ql](p) = 1(uij > Uik » Vk € {Oa 17' . 'aJ})7

@ Because of i.i.d. EV1 of ¢;;, individual i's choice probability of
product j is:

exp (z; 8] — ofp; +§)

7
> exp (w8; — afpr + &)
k=0

Pi;j(p) =

)
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GENERAL CASES MIXING DISTRIBUTION

Intermediate Results

o Consider a measure G(i) of heterogeneous individuals. Total
demand for product j is:

Q) = [ Py,
i€T
o Derivatives of the utility’s price subfunction (general case):

r afi(yiapj) "o azfi(yivpj)
fij = “op, and  fii= —(’)p? ~

o Consider the Bernouilli distribution (choice of one product):
tij = Py,
o =Pij(1—Py),
skij = Pij(1—Pi;)? — P} (1 — Py) = 07, (1 — 2P;;) .

(e, p) & DCM



GENERAL CASES MIXING DISTRIBUTION

Main Results
o Demand elasticity, curvature and manifold are:

gj(p) = oy dG(i
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GENERAL CASES MIXING DISTRIBUTION

Main Results
o Demand elasticity, curvature and manifold are:

(:‘j( O' dG

pilej(p)] =} U o2 dG (i) /(fu) -ski; dG(i )].
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GENERAL CASES MIXING DISTRIBUTION

MNL: of = a5 8F =3

@ Demand elasticity and curvature for MNL are:
ej(p) = ap;(1-P;),
1—2P;
(p)=-—"" <1,
pi(p) = 41— P, <

@ And the demand manifold is:

Olpj (1 — Q]PJ)

pi(p) = =)

© MNL is always log-concave (it imposes incomplete pass-through).
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GENERAL CASES MIXING DISTRIBUTION

Mixed Logit Demand Manifolds
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@ Consider a monopolist: one inside good with utility u;; =1 — 0.5p; + €;;.

@ Logit manifold. For any given curvature, a larger market share of the product
makes demand less elastic or, alternatively, for any given elasticity, a larger
market share reduces demand curvature.
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GENERAL CASES MIXING DISTRIBUTION

MNL with Attribute Heterogeneity: o ; 57
Mixed Logit Demand Manifolds (Vary Characteristic RC)
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@ Random coefficients of attributes allow for flexible substitution patters.

@ Random coefficients of attributes cannot generate more than complete
pass-through if log-concave distributed. - Caplin-Nalebuff ( 1991)
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GENERAL CASES MIXING DISTRIBUTION

MNL with Price Heterogeneity: o ; 3

Mixed Logit Demand Manifolds
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@ Price random coefficients to expand the range of estimable curvatures within a
unit demand discrete choice model.
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Skewness of the mixing distribution allows for greater curvature.

@ If demand estimates fall in the sub-convex region, a common cost increase for a

multiproduct firm results in a markup reduction for all its products and not only
for a subset (when some of these estimates fall into the super-convex region).

@ Symmetric R.C. distributions may restrict the range of estimable curvatures and
bias demand elasticity estimates upwards.




MIXING DISTRIB
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@ Choosing the shape of the distribution is not trivial — Combining normal and

lognormal allows us to cover nearly all the set of sub-convex demands.

@ Asymmetric distributions have been used to ensure that all individuals show
responses to price or attributes of the same sign. - Train (2009)

@ We can capture nearly all the sub-convex region with a flexible distribution of
price sensitivity:

).

@ CES now rationalized by the distribution of price-sensitivities (c;




BLP INcoME ErFrecTs BLP99

BLP: Discrete Choice with Income Effects

@ Remember that Nevo's quasi-linear preferences implied the following
utility subfunction:

fi(yip) = a(yi — pj)-

@ BLP does not include random coefficients on prices but rather they
allow for expenses in other products to depend on income:

fi(yi,p;) = aln (y; — p;).

@ An obvious generalization involves the use of the Box-Cox
Transformation:
A
c—p) =1
oo JaltmB 2l i,
aln(yi—pj), ifA=0.

filyi, i) = a(yi — p;
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BLP INcoME ErFrecTs BLP99

BLP99 Approximation

o For practical reasons most applications including income effects
follow the specification of BLP99, which is close to a Maclaurin
first order approximation:

a
fi(yispj) =~ alny; — s —o;p; .
7
@ More generally, using Box-Cox:

(N A ap;
filyispj) = Oé(yi —Pj) =~ ay§ )~ yl—& .

@ Thus, we allow data to pin down the strength of income effects
through more flexible price sensitivity formulation that is still
(roughly) consistent with utility maximization (Roy's Identity).

© A=0— BLP99; )\ =1 — quasi-linear (MNL).
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BLP INcoME ErFrecTs BLP99

Income Effects: Box-Cox Transformation, \
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@ Income effects play the same role than the distribution of price random
coefficient in expanding the range of estimable demand curvatures.

@ For any given A the resulting pass-through estimate is critically determined by
the empirical income distribution.
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BLP99: Effects by Price Segments

Demand for Automobiles: A =0
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BLP INcoME EFrFecTs BLP99

Demand for Automobiles

TABLE: Income Effects, Markups, and Pass-Through Rates

A=0 A=0.5 A=0.75 A=1
e 2.28 (0.26) 2.25 (0.48) 2,52 (1.01) 2.73 (2.05)
o 1.43 (0.08) 131 (0.07) 1.15 (0.05) 0.99 (0.01)
Markup (%) 44.41 (5.26) 46.25 (8.77) 44.48 (13.77) 4812  (20.55)
Pass-Through (%)  178.99  (18.33) 14591  (16.38)  117.90 (7.27)  99.41 (0.01)

@ Quasilinear MNL specification (A = 1; of = «) always predicts full pass-through
at the cost of excessively elastic demand.

@ BLP99 specification (A =0; o} = yg) leads to larger pass-through rates.

@ Averages differ but dispersion for elasticity and markups are also more
pronounced for quasilinear preferences while the opposite is true for curvature
and pass-through for BLP99 — important heterogeneous implications of
counterfactual analysis.
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EMPIRICAL SuMMARY MC EMPIRICAL RESULTS

Summary of Theoretical Results

@ Robust estimates of demand curvature requires flexible specification
of price interactions with consumer heterogeneity.

o A way of doing so is allowing price sensitivity to vary with observed
demographics, e.g., income.

o Flexible interaction of demographics with prices is useful to account
for pass-through in oligopoly with a parsimonious one-parameter
transformation (Box-Cox) that modulates curvature:

wij = 287 +1i(yi,p) + &5 + €
Income Effects: f;(y;.p;) = a(y; — pj)(’\)

Quasilinear: f;(y;,p;) = O‘Dz(/\)Pj

o How to identify A7
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SuMMARY MC EMPIRICAL RESULTS

Monte Carlo: Data Generating Process

uije = Po +Z (B% + okv))al Jt— Q- Djt - o e+ €iji s

CRmmon Idiosyncratic
cross . ] i itiviti
Carsross < Idiosyncratic Price Sensitivities

Characteristic Tastes

[ 2]

Indirect utility with income effects: J=20, T'=100, I=1000

@ Two (K =2) observable attributes (z*) with common (3% ) and
idiosyncratic (o%) valuations.

@ Income y;; iid LogNormal as in Andrews, Gentzkow & Shapiro
(2017) + time variation.

@ Researcher knows cost shocks w;; and marginal cost function
(log-linear).

@ Solve for equilibrium prices s.t. inside share = 20% and £=2.5

= (ﬂ0>a)'

M, THURK (e, p) & DCM



EMPIRICAL SuMMARY MC EMPIRICAL RESULTS

Identification

o Identify 0% via Gandhi & Houde (2020) Differentiation IVs:

2
zk _ k k
th = E <xrt l’jt>

T

o We've already shown that price RC generates curvature so can use
this IV as a measure of average curvature:

2
Z;)t = Z <ﬁrt - ﬁjt)

T

where p comes from hedonic pricing regression using wj.

o lIdentify A by interacting curvature measure (Z?) with distribution
moments:
78 = 7P @ {inc;"”, inc®%, inc}?%} .

Idea: Skewness of price interactions determines curvature =
interact pass-through measure with moments from the distribution.
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EMPIRI IMMARY MC EMPIRICAL RESULTS

Intuition: Heterogeneous Price Sensitivities

Uniform Pricing with
Targeted Pricing Heterogenous Price Sensitivities

Price

@ Consider the case of two consumers with linear demand curves of different slope.




EMPIRICAL SuMMARY MC EMPIRICAL RESULTS

Intuition: Heterogeneous Price Sensitivities

Uniform Pricing with

Targeted Pricing Heterogenous Price Sensitivities

Price

Left Panel

@ Suppose monopolist can set prices for each individual.
@ Marginal cost is $2 and decreases by $1. How does the firm respond?

@ Firm decreases price by $0.5 for both consumers.




EMPIRICAL SuMMARY MC EMPIRICAL RESULTS

Intuition: Heterogeneous Price Sensitivities

Uniform Pricing with
Targeted Pricing Heterogenous Price Sensitivities

Price

Right Panel

]

[*]
o
[*]

Constrain the firm to uniform pricing.
Marginal cost is $2 and decreases by $1. How does the firm respond?
Firm decreases price by $2.0.

The cost reduction resulted in firm setting a price such that the price-sensitive
consumer participates.

(e, p) & DCM



EMPIRICAL SuMMARY MC EMPIRICAL RESULTS

Intuition: Heterogeneous Price Sensitivities

Uniform Pricing with
Targeted Pricing Heterogenous Price Sensitivities

Price

Discussion

@ Pass-through could be over-shifted w/ uniform pricing + heterogeneous
price-sensitivity.

@ The effect of a cost shift is different at different price levels!

@ Widespread evidence of overshifting and uniform pricing in retail.




EMPIRICAL SuMMARY MC EMPIRICAL RESULTS

Results - Parameters

Scenario « (varies) A (varies) or =5 op =5

True-Specification A.Bias RMSE  A.Bias RMSE  A.Bias RMSE  A.Bias RMSE

1: log—log 0.003 0.161 0.000 0.000 -0.006 0.072 -0.012 0.231
2: linear-linear 0.001 0.011 - - 0.015 0.090 -0.082 0.947
3: BC-BC 0.000 0.037 -0.001 0.024 0.006 0.079 -0.001 0.735
4: log-BC 0.331 0.379 0.005 0.006 -0.012 0.070 0.025 0.121
5: linear-BC -0.031 0.048 -0.060 0.085 0.006 0.091 0.093 1.109
6: BC-log -15.514 15.612 - - 0.851 0.947 -2.211 2.218
7: BC-linear 0.248 0.248 - - 0.015 0.091 -0.272 0.987

@ Scenarios 1-3: MC recovers true parameters when correctly specified.

THURK (e, p) & DCM
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Results - Parameters

Scenario « (varies) A (varies) or =5 op =5

True-Specification A.Bias RMSE  A.Bias RMSE  A.Bias RMSE  A.Bias RMSE

1: log—log 0.003 0.161 0.000 0.000 -0.006 0.072 -0.012 0.231
2: linear—linear 0.001 0.011 - - 0.015 0.090 -0.082 0.947
3: BC-BC 0.000 0.037 -0.001 0.024 0.006 0.079 -0.001 0.735
4: log-BC 0.331 0.379 0.005 0.006 -0.012 0.070 0.025 0.121
5: linear—-BC -0.031 0.048 -0.060 0.085 0.006 0.091 0.093 1.109
6: BC-log -15.514 15.612 - - 0.851 0.947 -2.211 2.218
7: BC-linear 0.248 0.248 - - 0.015 0.091 -0.272 0.987

@ Scenarios 1-3: MC recovers true parameters when correctly specified.

@ Scenarios 4-5: Estimator recovers true parameters of nested simpler
DGPs.

THURK (e, p) & DCM



EMPIRICAL SuMMARY MC EMPIRICAL RESULTS

Results - Parameters

Scenario « (varies) A (varies) or =5 op =5

True-Specification A.Bias RMSE  A.Bias RMSE  A.Bias RMSE  A.Bias RMSE

1: log—log 0.003 0.161 0.000 0.000 -0.006 0.072 -0.012 0.231
2: linear—linear 0.001 0.011 - - 0.015 0.090 -0.082 0.947
3: BC-BC 0.000 0.037 -0.001 0.024 0.006 0.079 -0.001 0.735
4: log-BC 0.331 0.379 0.005 0.006 -0.012 0.070 0.025 0.121
5: linear-BC -0.031 0.048 -0.060 0.085 0.006 0.091 0.093 1.109
6: BC—log -15.514 15.612 - - 0.851 0.947 -2.211 2.218
7: BC-linear 0.248 0.248 - - 0.015 0.091 -0.272 0.987

@ Scenarios 1-3: MC recovers true parameters when correctly specified.

@ Scenarios 4-5: Estimator recovers true parameters of nested simpler
DGPs.

@ Scenarios 6-7: Common (miss-)specifications introduce bias.

THURK (e, p) & DCM
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Results - Biases Matter

Scenario Coeff . Var MAB Corr.
True-Specification DGP EST. 5 P (e, p) (¢, p)
1: log—log -3.81 -3.79 0.00 0.00 0.66 0.66
2: linear—linear 0.00 0.00 0.00 0.00 0.66 0.66
3: BC-BC -0.57 -0.57 0.00 0.00 -0.47 -0.47
4: log-BC -3.81 -3.77 0.00 0.00 -0.47 -0.47
5: linear-BC 0.00 -0.11 0.00 -0.01 -0.44 -0.43
6: BC-log -0.57 -3.77 0.55 -0.69 -0.44 0.63
7: BC-linear -0.57 0.00 -0.16 0.22 -0.44 -0.43

@ Scenarios 1-3: MC recovers (g, p) when correctly specified.

(e, p) & DCM
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Results - Biases Matter

Scenario Coeff . Var MAB Corr.
True-Specification DGP EST. 5 P (e, p) (¢, p)
1: log—log -3.81 -3.79 0.00 0.00 0.66 0.66
2: linear—linear 0.00 0.00 0.00 0.00 0.66 0.66
3: BC-BC -0.57 -0.57 0.00 0.00 -0.47 -0.47
4: log-BC -3.81 -3.77 0.00 0.00 -0.47 -0.47
5: linear-BC 0.00 -0.11 0.00 -0.01 -0.44 -0.43
6: BC—log -0.57 -3.77 0.55 -0.69 -0.44 0.63
7: BC-linear -0.57 0.00 -0.16 0.22 -0.44 -0.43

@ Scenarios 1-3: MC recovers (g, p) when correctly specified.

@ Scenarios 4-5: Estimator recovers (g, p) of nested simpler DGPs.

@ Scenarios 6-7: Common (miss-)specifications generated biased (£, p):
o Biased own- and cross-price elasticities = antitrust implications.

o Biased curvature = pass-through (e.g., inflation) and trade
implications.

THURK (e, p) & DCM
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Question and Empirical Strategy

@ Motivation:

@ Increased access to customer data & sophisticated pricing raises concern
about distributional implications. - cea (2015)

® Welfare effects of 37%-degree price discrimination (3DPD) driven by
relative curvature of local demands. - Aguirre, Cowan & Vickers (2010)

@ Research Question: How does the specification of demand affect our
estimate of the consumer welfare implications of 3DPD?

@ Approach:
@ Mixed-Logit demand estimation using store-level RTE cereal data.

@ Recover upstream marginal cost of each product based on multi-product
firm portfolios under uniform pricing across stores in given market.

@ Experiment: Given recovered marginal cost and preferences, allow
products’ prices to vary by store & recompute equilibrium prices.

MIRAVETE, SEIM, RK (e, p) & DCM



EMPIRICAL SuMMARY MC EMPIRICAL RESULTS

: Breakfast Cereal

Weekly scanner data for ready-to-eat (RTE) cereal from 2007-2011.

Product defined brand-flavor pair; e.g., Kellogg's Special K Fruit &
Yogurt.

Serving defined as one ounce.

Potential market identified via milk and paper towels.
— Backus, Conlon & Sinkinson (2021)

Focus on products which account for 85% of sales.

Large markets with geographic spread: Boston (5.2% of revenue),
Philadelphia (4.5%), Chicago (4.2%), San Francisco (3.0%), Seattle
(2.5%), Houston (2.5%), and St Louis (2.4%). Ind'l level: Eau Clair,
Pittsfield.

Append demographic information matched by Public-Use Microdata
(PUMA) region from the American Community Survey (ACS).
— Most variation across geography, not time.

MIRAVETE, SEIM, THURK (e, p) & DCM
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Chains, Markets Served, & Uniform Pricing

(a) Number of Stores within a Chain (b) Income Variation within a Chain ($000)
140
Chains with More 120 Chains with More
than One Store: 74.34% than One Store: 74.34%

100
" 80
60
40
20

0

$5 $10 $15 $20 $25 $30 $35

@ Many multi-location chains in data.
@ Locations differ in income.

@ As in Della Vigna & Gentzkow (2017) and Hitsch, Hortacsu, & Lin
(2021), uniform pricing prevalent: for median product, chain fixed effects
explain 72% of variation in price; market fixed effects 31%.
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Specification

@ Quasi-linear indirect utility:
uije = ;87 + aipje + Eie + €ije

@ Characteristic and price random coefficients are defined as

(%) = (g) +1IDy + vy, vy~ N(0,In41),

K2

o Flexible price-interactions:

af = a + s 1K 4 py yl(/\)
where \
y; —1
¢ , A#O
A
W=y
In (yl) , A=0

M, THURK (e, p) & DCM
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Estimation

@ Demand-side.

o Estimator:

6= arg;nin {9(9)'W9(9>}7 where () = [ngz;]

@ BLP moment conditions:
MO)=E|Z'¢0)]

where Z are MC instruments, including Z¢ to identify \.

@ Micro moment conditions (g™(6))

1. Elpricely; € Qi]/E[pricely; € Q1],k =2,3,4 3. cov(kids, price)
2. Ely;|buy] 4. Elkids|buy]

MIRAVETE, SEIM, THURK (e, p) & DCM
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TaBLE: IRI: Flexible Demand

Flexible Income Log-Income MNL
Elasticities
- Mean 2.14 2.93 1.90 2.16
- Median 2.14 291 1.88 2.14
- Stand. Dev. 0.45 0.67 0.44 0.53
- 90% 2.71 3.79 2.47 2.85
- 10% 1.55 2.06 1.34 1.49
Curvature
- Mean 1.09 1.01 1.03 1.00
- Median 1.08 1.01 1.03 1.00
- Stand. Dev. 0.05 0.02 0.03 0.01
- 90% 1.15 1.02 1.06 1.00
- 10% 1.04 0.98 1.01 0.99

Tapre: IRI: Matching Consumption Patterns

Moment Data  Flexible (A=2.31) Income (A=1.00) Log-Income (A=0.00) MNL
E[Price|IncomeQ2]/E[Price|lncome@]  1.0011 1.0022 1.0128 1.0187 1.0000
E[Price|IncomeQs]/E[Price/Income@]  1.0087 1.0091 1.0252 1.0250 1.0000
E[Price|IncomeQy]/E[Price|Income@;]  1.0492 1.0498 1.0478 1.0309 1.0000
Corr(Price,Kids) -0.0149 -0.0149 -0.0132 -0.0164 0.0000
E[Income|Buy] 0.9852 0.9851 0.9852 0.9851 1.0000

E[Kids|Buy] 1.2470 1.2469 1.2435 1.1492 1.0000
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Alternative Specifications — Implications

o Consider impact of demand specification on estimated consumer
welfare effects of uniform pricing:

o Assuming firms set price a la multi-product Bertrand-Nash,
recover single product MC from observed uniform pricing.

o Holding fixed estimated MCs and ownership patterns, predict
optimal store-level prices and optimal uniform prices for each
product.

o Assess welfare implications of uniform pricing, relative to store-level
pricing, via compensating variation.

o CV > 0 — consumer benefits from uniform pricing.

MIRAVETE, SEIM, THURK (e, p) & DCM
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Alternative Specifications — Consumer Welfare

0.20 |
} ---- Flexible
Consumers Better-off Income
with Market Pricing —— Logincome
0.15 —— MNL
2
20.10
0)
a
0.05 |
I
I
I
I
! ===
5 | ==
-30.0 -20.0 -10.0 0.0 10.0 20.0 30.0

Compensating Variation (% of Spend)

@ The spread of the distribution on compensating variation follows from each
models ability to match the distribution of price sensitivity and the distribution
of demand curvature.

@ All four specifications predict that on average, consumers are near indifferent
between targeted and uniform pricing, but models make different distributional
predictions (spread).

(e, p) & DCM
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Alternative Specifications — Winners & Losers of Uniform

Average Compensating Variation (% of Spend)

Pricing
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@ We decompose the distributions of winners and losers of uniform pricing by

demographic group.

@ Allowing for flexibility in the estimation of demand curvature leads to very
different sign and magnitude of welfare effects.




SUMMARY

CONTRIBUTION

@ We explore the determinants of demand curvature estimates in aggregate
discrete choice models.

@ We show that a unit-demand BLP-style model can accommodate a wide
range of demand curvatures beyond MNL and up to CES.

@ We provide a flexible and parsimonious approach to specifying price
responsiveness.

o Implementation uses the famous Box-Cox transform and
amounts to adding a single parameter.

o lIdentification is straight-forward and intuitive.

@ Monte Carlo and empirical results indicate that this flexibility is
economically important for policy.

M, THURK (e, p) & DCM
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THANK YOU!
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BLP99: Effects by Geographic Origin

Demand for Automobiles: A = 0.0

2
5
£
g
a
-
2
£
&

US Firms (1.36, 2.80)

European Firms (1.34, 2.87) o,

Japanese Firms (1.34, 2.86)
Al Products (1.35, 2.83)

.o

Super-Convex Region

Cabb-Douglas

02 04 06 08

Estimated Demand Curvature (5)

Demand for Automobiles: A = 0.7

10 12 14 16 18 20

Estimated Demand Elasticity (£)
=
°

US Firms (1.14, 2.51)
European Firms (1.12, 3.70)
Japanese Firms (1.14, 2.39)
Al Products (1.13, 2.77)

Super-Convex Region

Cobb-Douglas

02 04 06 08
Estimated Dem

1.0 12 14 16 18 2.0
and Curvature (5)

Demand for Automobiles: A = 0.5

® US Firms (1.30, 2.22)
®  European Firms (1.25, 2.76)
® Japanese Firms (1.30,2.18) |+ | e
E ® Al Products (1.29,2.34)  I»
50
= Super-Convex Region
5 4.0 e
E
g
a
5 30
2 4
£ 20
1 - Cobb-Douglas
02 04 06 08 10 12 14 16 18

Estimated Demand Curvature (5)

Demand for Automobiles: A =1.0

8.
®  US Firms (0.99, 2.24)
7.0] ® European Firms (1.00, 4.54)
T ®  Japanese Firms (0.99, 2.01) =
2 6.0{ ® Al Products (0.99, 2.75)
850
o Super-Convex Region
2
g0 .
g
a
3 30
2 .
B
£ 20 B
e I o Doudias
%% 02 04 o6 08 10 12 14 16 18

Estimated Demand Curvature ()

2.0




SUMMARY

Nevo's Estimates
TABLE: Breakfast Cereal: Price Related Estimates

Means Std. Dev. Demographic Interactions (7's) Manifold

SPECIFICATION (a’s) (o's) log(INcoME)  log(INcomE)?  CHILD € P

[A] -62.7299 3.3125 588.3252 -30.1920 11.0546 3.62 1.06
(14.8032) (1.3402) (270.4410) (14.1012) (4.1226)

[B] -30.9982 2.0216 — — — 3.74  0.96
(0.9674) (0.9367) — — —

€] -53.1367 — 444.7281 -22.3987 16.3664 3.60 1.08
(12.1023) — (209.6548) (10.7282) (4.7824)

[D] -30.8902 — — — — 3.74  0.96
(0.9944) e . . e

@ Notice that price random coefficients are significant but very small relative to
the demand slope estimates.

Demographic interactions are substantial.
@ Average elasticity estimates appear robust across different specifications.

Average curvatures are dangerously close to 1, with very different pass-through
rates implications. Do we need a structural model at all?

@ Averages say nothing about the distribution of (¢, p).

THURK (e, p) & DCM
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